Journal articles

  1. Seakeeping with the semi-Lagrangian Particle Finite Element Method. [pdf]
    Prashanth Nadukandi, Borja Servan-Camas, Pablo Agustín Becker, Julio García-Espinosa
    Computational Particle Mechanics, 2016 (accepted). DOI: 10.1007/s40571-016-0127-2
  2. An accurate FIC–FEM formulation for the 1D convection–diffusion–reaction equation. [pdf]
    Eugenio Oñate, Juan Miquel, Prashanth Nadukandi
    Computer Methods in Applied Mechanics and Engineering, 2016; 298:373–406. DOI: 10.1016/j.cma.2015.09.022
  3. Numerically stable formulas for a particle-based explicit exponential integrator. [pdf]
    Prashanth Nadukandi
    Computational Mechanics, 2015; 55(5):903–920. DOI: 10.1007/s00466-015-1142-5
  4. P1/P0+ elements for incompressible flows with discontinuous material properties. [pdf]
    Eugenio Oñate, Prashanth Nadukandi, Sergio Idelsohn
    Computer Methods in Applied Mechanics and Engineering, 2014; 271(1):185–209. DOI: 10.1016/j.cma.2013.12.009
  5. A Petrov–Galerkin formulation for the alpha interpolation of FEM and FDM stencils: Applications to the Helmholtz equation. [pdf]
    Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
    International Journal for Numerical Methods in Engineering, 2012; 89(11):1367–1391. DOI: 10.1002/nme.3291
  6. A high-resolution Petrov–Galerkin method for the convection–diffusion–reaction problem. Part II—A multidimensional extension. [pdf]
    Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
    Computer Methods in Applied Mechanics and Engineering, 2012; 213–216:327–352. DOI: 10.1016/j.cma.2011.10.003
  7. A family of residual-based stabilized finite element methods for Stokes flows. [pdf]
    Eugenio Oñate, Prashanth Nadukandi, Sergio R. Idelsohn, Julio García-Espinosa, Carlos Felippa
    International Journal for Numerical Methods in Fluids, 2011; 65(1–3):106–134. DOI: 10.1002/fld.2468
  8. A fourth-order compact scheme for the Helmholtz equation: Alpha-interpolation of FEM and FDM stencils. [pdf]
    Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
    International Journal for Numerical Methods in Engineering, 2011; 86(1):18–46. DOI: 10.1002/nme.3043
  9. A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem. [pdf]
    Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
    Computer Methods in Applied Mechanics and Engineering, 2010; 199(9–12):525–546. DOI: 10.1016/j.cma.2009.10.009
  10. Analysis of a consistency recovery method for the 1D convection–diffusion equation using linear finite elements. [pdf]
    Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
    International Journal for Numerical Methods in Fluids, 2008, 57(9):1291–1320. DOI: 10.1002/fld.1863

Ph.D. thesis

Stabilized finite element methods for convection–diffusion–reaction, Helmholtz and Stokes problems.
Prashanth Nadukandi (Advisors: Prof. Eugenio Oñate, Dr. Julio García-Espinosa)
Universitat Politècnica de Catalunya, Barcelona, Spain, 2011; 239 pages.