Journal articles
- 
      A second-order semi-Lagrangian particle finite element method for fluid flows. 
      [pdf] 
Jonathan Colom-Cobb, Julio García-Espinosa, Borja Servan-Camas, Prashanth Nadukandi
Computational Particle Mechanics, 2020; 7(1):3–18. DOI: 10.1007/s40571-019-00258-9 - 
      Computing the Wave-Kernel Matrix Functions. 
      [pdf] 
Prashanth Nadukandi, Nicholas J. Higham
SIAM Journal on Scientific Computing, 2018; 40(6):A4060–A4082. DOI: 10.1137/18M1170352 - 
      Accurate FIC-FEM formulation for the multidimensional steady-state advection–diffusion–absorption equation. 
      [pdf] 
Eugenio Oñate, Prashanth Nadukandi, Juan Miquel
Computer Methods in Applied Mechanics and Engineering, 2017; 327:352–368. DOI: 10.1016/j.cma.2017.08.012 - 
      Seakeeping with the semi-Lagrangian Particle Finite Element Method. 
      [pdf] 
Prashanth Nadukandi, Borja Servan-Camas, Pablo Agustín Becker, Julio García-Espinosa
Computational Particle Mechanics, 2017; 4(3):321–329. DOI: 10.1007/s40571-016-0127-2 - 
      An accurate FIC–FEM formulation for the 1D convection–diffusion–reaction equation. 
      [pdf] 
Eugenio Oñate, Juan Miquel, Prashanth Nadukandi
Computer Methods in Applied Mechanics and Engineering, 2016; 298:373–406. DOI: 10.1016/j.cma.2015.09.022 - 
      Numerically stable formulas for a particle-based explicit exponential integrator. 
      [pdf] 
Prashanth Nadukandi
Computational Mechanics, 2015; 55(5):903–920. DOI: 10.1007/s00466-015-1142-5 - 
      P1/P0+ elements for incompressible flows with discontinuous material properties. 
      [pdf] 
Eugenio Oñate, Prashanth Nadukandi, Sergio Idelsohn
Computer Methods in Applied Mechanics and Engineering, 2014; 271(1):185–209. DOI: 10.1016/j.cma.2013.12.009 - 
      A Petrov–Galerkin formulation for the alpha interpolation of FEM and FDM stencils: Applications to the Helmholtz equation.  
      [pdf] 
Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
International Journal for Numerical Methods in Engineering, 2012; 89(11):1367–1391. DOI: 10.1002/nme.3291 - 
      A high-resolution Petrov–Galerkin method for the convection–diffusion–reaction problem. Part II—A multidimensional extension.  
      [pdf] 
Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
Computer Methods in Applied Mechanics and Engineering, 2012; 213–216:327–352. DOI: 10.1016/j.cma.2011.10.003 - 
      A family of residual-based stabilized finite element methods for Stokes flows. 
      [pdf] 
Eugenio Oñate, Prashanth Nadukandi, Sergio R. Idelsohn, Julio García-Espinosa, Carlos Felippa
International Journal for Numerical Methods in Fluids, 2011; 65(1–3):106–134. DOI: 10.1002/fld.2468 - 
      A fourth-order compact scheme for the Helmholtz equation: Alpha-interpolation of FEM and FDM stencils. 
      [pdf] 
Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
International Journal for Numerical Methods in Engineering, 2011; 86(1):18–46. DOI: 10.1002/nme.3043 - 
      A high-resolution Petrov–Galerkin method for the 1D convection–diffusion–reaction problem. 
      [pdf] 
Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
Computer Methods in Applied Mechanics and Engineering, 2010; 199(9–12):525–546. DOI: 10.1016/j.cma.2009.10.009 - 
      Analysis of a consistency recovery method for the 1D convection–diffusion equation using linear finite elements. 
      [pdf] 
Prashanth Nadukandi, Eugenio Oñate, Julio García-Espinosa
International Journal for Numerical Methods in Fluids, 2008, 57(9):1291–1320. DOI: 10.1002/fld.1863 
Ph.D. thesis
      Stabilized finite element methods for convection–diffusion–reaction, Helmholtz and Stokes problems. 
      Prashanth Nadukandi (Advisors: Prof. Eugenio Oñate, Dr. Julio García-Espinosa)
      Universitat Politècnica de Catalunya, Barcelona, Spain, 
       2011; 239 pages.